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Painleve analysis of the non-linear Schrodinger family of 
equations 

Peter A Clarksont and Christopher M CosgroveS. 
Department of Mathematics and Computer Science, and Institute for Nonlinear Studies, 
Clarkson University, Potsdam, NY 13676, USA 

Received 23 July 1986 

Abstract. In this paper we apply the PainlevC tests to the generalised derivative non-linear 
Schrodinger equation, 

where U* denotes the complex conjugate of U, and a, b and c are real constants, to determine 
under what conditions the equation might be completely integrable. It is shown that, apart 
from a trivial multiplicative factor, this equation possesses the Painlevt property for partial 
differential equations as formulated by Weiss, Tabor and Carnevale only if c =ab(2b- a ) .  
When this relation holds, this is equivalent under a gauge transformation to the derivative 
non-linear Schrodinger equation (DNLS) of Kaup and Newell, which is known to be 
completely integrable, or else to a linear equation. In addition, we consider a generalisation 
of the mixed non-linear Schrodinger equation of Wadati er a1 obtained by adding a term 
du2u* to the right-hand side of the equation and once again find that the only cases which 
possess the PainlevC property are transformable to the derivative non-linear Schrodinger 
equation or the original non-linear Schrodinger equation (NLS), which is known to be 
completely integrable. In the final section, we study the singularities of the Wadati-Konno- 
lchikawa ( W K I )  equation and a new equation of Dodd and Fordy, and we conjecture that 
the latter is non-integrable. We also take a closer look at Ishimori’s Backlund transformation 
relating the W K I  equation to NLS and find that it factorises into a simple easily invertible 
transformation relating W K I  to DNLS and a known Miura transformation relating DNLS 

to NLS. As an application we derive a new three-parameter Lie group of transformations 
admitted by WKI.  

iu ,  = u , , + i a u u * u , + i b u 2 u T + ~ ~ 3 ~ * 2  

1. Introduction 

Several very important, physically interesting, non-linear partial differential equations 
(PDE) are solvable by inverse scattering, such as the Korteweg-de Vries equation, the 
non-linear Schrodinger equation ( NLS), the Boussinesq equation, the sine-Gordon 
equation and the Kadomtsev-Petviashvili equation (cf Ablowitz and Segur 1981). This 
method, in effect, reduces the solution of the non-linear equation to that of a linear 
integral equation and the PDE is then said to be completely integrable. 

The Painlev6 conjecture, as formulated by Ablowitz et a1 (1978,1980a) and Hastings 
and McLeod (1980), asserts that every ordinary differential equation (ODE) which 
arises as a similarity reduction of a PDE solvable by inverse scattering is of Painlev6 
type, i.e. it has no movable singularities except poles, perhaps after a transformation 
of variables. Ablowitz e? a1 (1980a) and McLeod and Olver (1983) have given proofs 
of the conjecture under certain restrictions. Subsequently, Weiss et a1 (1983) have 
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defined the PainlevC property for PDE and developed a method for testing for a common 
particular type of movable singularity, without having to study any similarity reductions 
(which may not exist anyway). A PDE is said to possess the Painleve‘property if the 
only singularities of the general integral which can live on arbitrary non-characteristic 
(‘movable’) hypersurfaces are poles (all variables are presumed complexified). These 
PainlevC tests have proved to be a useful criterion for the identification of completely 
integrable PDE. 

The purpose of § §  2 and 3 of this paper is to determine, using the PainlevC tests, 
for which real values of the parameters a, b and c the generalised derivative non-linear 
Schrodinger equation (GDNLS), 

iu ,  = u, ,+ iauu*u,+ibu*u~+cu3u** (1.1) 

where U* denotes the complex conjugate of U, is completely integrable. This equation 
is a generalisation of both the derivative non-linear Schrodinger ( DNLS) equation 
considered by Kaup and Newell (1978) 

iu ,  = u,,+2ibuu*u,+ibu2u~ (1.2) 

iu,  = ~,,+iuuu*u, (1.3) 

which we shall call DNLSI, and that considered by Chen et a1 (1979): 

which we shall call DNLSII  (see equation (2.13) below for a third case). Kaup and 
Newell (1978) solved the initial value problem for DNLSI under the restriction u(x ,  t )  + 0 
as IxI+co using an inverse scattering formalism of Zakharov-Shabat type. This has 
subsequently been generalised to u ( x ,  t )  + constant (Kawata and Inoue 1978) and to 
u ( x ,  t )  + (constant) exp[i(kx - of) ]  (Kawata et a1 1980). While DNLSII  does not appear 
explicitly in Kaup and Newell (1978), their variables Q and R solve (1.3) with Q = U*, 
R = U, a = 1. Chen et a1 (1979) and Dodd and Fordy (1983) write down associated 
linear problems for equation (1.3) but do not attempt to solve the equation. 

In § 3 we show that the PainlevC tests suggest that a necessary condition for the 
GDNLS equation (1.1) to be completely integrable is that 

and then under this condition (1.1) becomes 

iu, = u,,+iauu*u,+ibu2u,*+$b(2b - u ) u 3 u * *  (1.5) 

which Kundu ( 1984) calls the ‘higher-order non-linear Schrodinger equation’, a term 
which we would rather save for generalisations to higher orders of differentiation. We 
use the word ‘suggest’ in this context because we are aware that a breakdown of the 
PainlevC property does not necessarily imply that a PDE is non-integrable (many 
integrable non-Painlev6 PDE are known to us, including some where there is, at present, 
no known change of variable to a PainlevC type equation). It is clear that equation 
(1.5) contains both DNLSI ( a  = 2 b )  and DNLSI I  (b =0)  as special cases. However, it is 
not a non-trivial generalisation since it may be transformed into both DNLSI  and DNLSI I  

when a # b by a U( 1) gauge transformation (Kundu 1984); the case a = b transforms 
to a linear PDE. This shows that DNLSI and DNLSI I  are equivalent to each other, which 
apparently was first noticed by Wadati and Sogo (1983), although, as previously 
mentioned, the transformation is implied in the work of Kaup and Newell (1978) (see 
their equations (1 1) and (12)). Wadati and Sogo (1983) also found the Miura-type 
Backlund transformation connecting DNLSI with the original non-linear Schrodinger 
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equation (NLS) (which was solved by inverse scattering by Zakharov and Shabat 
(1972)). Thus we conclude that condition (1.4) is at least sufficient for complete 
integrability and we conjecture that equation ( 1 . l)  is non-integrable otherwise because 
of the character of the singularities of u ( x ,  t )  when (1.4) does not hold. 

In a recent paper, Dodd and Fordy (1984) have used the prolongation method of 
finding the associated linear scattering problem due to Wahlquist and Estabrook (1975) 
in order to find conditions under which certain generalisations of the non-linear 
Schrodinger equation are (potentially) completely integrable. In their case 11, which 
they narrow down essentially to our equation (1.1) with complex parameters, they find 
that the integrable members take the form (1.5), except that the last term appears with 
incorrect sign. However, they apparently did not recognise that their new integrable 
equation was transformable to DNLSI  or, in the degenerate case a = b, to a linear 
equation. 

In $ 3  4 and 5 we consider some further non-linear Schrodinger-type equations. In 
particular we show that the mixed non-linear Schrodinger equation (MNLS) of Wadati 
et a1 (1979a): 

iu, = u,+au2u*+ib(u2u*), (1.6) 

where a and b are real constants, is equivalent to DNLSI under a point transformation, 
which was used by Kawada e? al (1980) to simplify their boundary conditions on 
DNLSI. We give the results of a calculation analogous to that in § 3 which shows that 
the equation 

(1.7) 

where a, b, c and d are real constants, denoted here the generalised mixed non-linear 
Schrodinger equation (GMNLS),  has the PainlevC property only if (1.4) holds, regardless 
of the value of d ;  but when (1.4) holds, equation (1.7) is equivalent to (1.6) under the 
aforementioned gauge transformation. Also the aforementioned point transformation 
can be used to remove the last term from (1.7) whenever a # b. For convenience, the 
associated linear problem for (1.7) under the restriction (1.4), together with the effects 
of the gauge and point transformations, is written out at the end of § 4 so that the 
reader may readily adapt the inverse scattering formalism of Kaup and Newel1 (1978) 
or Kawata er a1 (1980) to any of the integrable equations in the GDNLS and GMNLS 

families. 
In § 5, we investigate the singularities of the general solutions of the Wadati-Konno- 

Ichikawa equation ( W K I )  (Wadati et al 1979b) 

iu ,  = U,, +iauu*u, +ibu2u:+ C U ~ U * ~ +  du2u* 

-iu,  = [ u ( l +  UU*)-”~] .~ ,  (1.8) 

iu, = U,, +2 ia(  u ~ ’ ~ ” ’ ’ ~ ) ,  + bu2u* (1.9) 

where a and b are real constants, which was discovered and conjectured to be integrable 
by Dodd and Fordy (1984). We find that equation (1.8) has movable square roots 
(movable fractional powers, especially square roots, are typical of equations transform- 
able to PainlevC type equations via hodograph transformations) and that equation 
(1.9) has movable logarithms, which is highly suggestive that the equation is in fact 
not integrable. 

Also in § 5 we simplify and construct the inverse of the Backlund transformation 
to the NLS equation, due independently to Ishimori (1982) and Wadati and Sogo 

which is known to be integrable and transformable to NLS, and the equation 
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(1983). The inverse depends on several quadratures and the solution of a Riccati 
equation, which is precisely the same Riccati equation as in the Miura transformation 
relating NLS to DNLSI .  It follows that W K I  and DNLSI  are related by a much simpler 
hodograph-type transformation which involves quadratures only in both directions. 
We point out the close analogy with the Backlund transformations relating the Harry- 
Dym equation (Kruskal 1975) to the K d v  and M K d v  equations. These results make the 
internal symmetries of the WKI  equation more transparent and we derive a new Lie 
group of transformations, a two-to-one homomorphic image of SU(2), admitted by W K I .  

2. Alternative formulations 

Since we intend to carry out a PainlevC analysis on equation ( l . l ) ,  we must first 
complexify all variables. In order to do this, write down both (1.1) and its formal 
complex conjugate ( i +  -i, U + U*), and then replace U* by U whenever it occurs. Thus 
we obtain the system 

( 2 . 1 ~ )  

(2.lb) 

in which U and U are treated as independent complex functions of the complex variables 
x and t (analogous to the situation for ODE (Ablowitz et al 1980a)). 

iul=u, ,+iauuu,+ibu2u,+cu 3 2  U 

-iu, = U,, -iauuv, -ibu2u,+cu2u3 

In (2.1) make the change of variables 

u(x, t )  = R(x, t )  exp[i8(x, t ) ]  u ( x ,  t )  = R(x, t )  exp[-iO(x, t ) ]  (2.2) 

where R and 0 are both to be regarded as complex functions. Then equations (2.1) 
become 

R,=2R,0,+R0,,+(a+b)R2R, ( 2 . 3 ~ )  

-RO,= R,,-R0f:+(b-a)R38,+cR5. (2.3 b) 

Equation ( 2 . 3 ~ )  implies the existence of a potential + defined by 

(Lx=R2=uu  ( 2 . 4 ~ )  

+, = 2R28,+!(a + b ) R 4 =  i(uu, - uu,)+$(a + b)u2u2. (2.4b) 

Suppose k is a real parameter, which will be chosen shortly; now define a new e' 
variable by 

e '=O+k+ (2.5) 

and also define 

U'=  R exp(ie') = U exp(ik+) U ' =  R exp(-ie') = U exp(-ikt,h). (2.6) 

This transformation is precisely the U( 1) gauge transformation of Kundu (1984), which 
also applies essentially unchanged to the more general equation (1.7), with no new 
restrictions on the parameters. The new variables (ti, U ' )  and (R, e') satisfy equations 
identical in form to equations (2.1) and (2.3), respectively, with new parameters 

6 = b - 2 k  c'= c +  k2+$k(a  -3b).  (2.7) a ' = a - 2 k  
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It follows that at most two of the three parameters a, 6 and c are essential and that 
various normalisations are possible, e.g. E = O  (in fact equations (2.1) also possess a 
scaling symmetry, which is obvious by inspection, and therefore actually only one of 
the three parameters is essential). The most convenient normalisation, from the point 
of view of PainlevC analysis, is a‘ + 6 = 0. So we choose 

(2.8) k =a(  a + 6)  T = 8 + a( a + b)+. 

Therefore by eliminating 8 in favour of T in equation (2.3) we obtain 

R,  = RT,, + 2R,T, 

- R T, = R,, - R T i  + AR T, + BR5 

( 2 . 9 ~ )  

(2.96) 

where 

A:=  6 - a  B : =  c + & ( u + ~ ) ( ~ u  -56 ) .  ( 2 . 9 ~ )  

In terms of R and T, the relations defining the potential $ are 

$, = R 2  +, =2R2T, .  (2.10) 

We conclude this section by writing down the relationships between DNLSI,  DNLSII  

and NLS (due to Wadati and Sogo (1983)) in the present notation. Let u1 solve DNLSI 

in the form (1.2) and write ui = U:, i = 1 , 2 , 3  ( u 3 .  v3 will be required shortly). Then a 
solution of DNLSII  (1 .3)  is given by 

u2 = ( 6 / ~ ) ” ~ ~ 1  exp(i6+/2) u 2 =  ( 6 / a ) ’ ” u I  exp(-ib+/2) (2.11) 

+x = uiui = ( a / b ) u 2 ~ 2  (2.12a) 

+, = i ( u l v l , -  v , u , , ) + ~ b u : u :  

where 

= i(a/6)(u2u2, - u 2 u 2 , ) + ~ ( a 2 / 6 ) u : u :  (2.126) 

(a scaling of u2 and ur has been used to match the parameters in (1.2) and (1 .3) ) .  
Before considering the Miura transformation to NLS, first apply the gauge transforma- 
tion (2.6) with k = 6 to DNLSI  to obtain the following equation (Gerdjikov and Ivanov 
19821, which may conveniently be denoted D N L S I I I  

( 2 . 1 3 ~ )  

(2.136) 

iu ,  = U,, -i6u2u, + i b 2 u 3 v 2  

-iu, = U,, +i6u2u, + f b 2 u 2 v 3  
which is solved by 

v3 = u1 e-ib+. (2.14) i bJ. u3 = u1 e 

Now the original NLS equation, namely 
iu, = U,, + 6u 2 U 

-iv, = U,, + 6uu2 
( 2 . 1 5 ~ )  

(2.156) 
is solved by 

( 2 . 1 6 ~ )  U = -iv3, +fbu3u3 2 U = U3 

and also by 

U = iu3, +f6u:u3 U = u3.  (2.166) 
The two distinct Miura transformations (2.16a, 6)  lead immediately to auto-Backlund 
transformations for all integrable members of the GDNLS and GMNLS families. 
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3. Paioleve analysis 

In this section we use the method given by Weiss et a1 (1983), simplified by Kruskal 
(1982) (hereafter called the WTCK method), in order to determine necessary conditions 
for equations (2.9) to possess the PainlevC property for PDE and hence be possibly 
completely integrable (equivalently we could have considered either equations (2.1) 
or (2.3)). PainlevC analysis strongly suggests, but does not prove, that these conditions 
are necessary for the equations (2.9) to be completely integrable since the solutions 
have a rather bad type of movable singularity when the conditions are not met. In 
order to be more precise about the necessity of the condition, we would need a definition 
of integrability, which we are not ready to give; whatever definition is eventually agreed 
upon, we believe the set of PainlevC-type PDE should be a proper subset of the set of 
integrable PDE. On the other hand, the conditions turn out to be sufficient for integrabil- 
ity because, when they are met, the equation is transformable to DNLSI, whose solution 
by inverse scattering has been provided by Kaup and Newel1 (1978). Furthermore, 
when the same conditions are met, we claim that the PDE has the PainlevC property 
(except for an overall multiplicative factor which can be removed by a change of 
variables) on the basis that all solutions derived from the inverse scattering formalism 
have no movable singularities worse then poles (see Ablowitz et a1 (1980a, b) and 
McLeod and Olver (1983) for the general argument); a complete proof would require 
showing that the PainlevC property is not influenced by the class of solutions not 
captured by the inverse scattering formalism due to restrictions on the initial value 
problem. 

The WTCK method involves seeking solutions of equations (2.9) in the form 
s1 oc 

R ( x ,  t )  = xp c R j ( t ) X ’  T ( x ,  t ) = X 9  T , ( t ) X j  
j = O  j = O  

(3.1) 

with 

X ( x ,  t )  := x -f( t )  (3.2) 

where f ( t )  is an arbitrary locally analytic function of t and R , ( t )  and T , ( t ) ,  j =  
0, 1 ,2 , ,  . . , are locally analytic functions of t ,  with Ro and To not both zero, valid in 
the neighbourhood of a generic non-characteristic hypersurface (in this case curve) 
defined by X = 0. It should be remarked that we attempt to construct expansions of 
the form (3.1) even though we expect them to break down for some j or even be of 
the wrong form altogether; the justification for the WTCK method is provided by the 
fact that the postulated forms are correct when the conditions for the PainlevC property 
are satisfied, and in other cases the Painlev6 analysis shows precisely what forms the 
correct expansions should take (of course, a more satisfying but far less convenient 
procedure would be to write down a formal expansion sufficiently general to cover all 
anticipated cases, for example a logarithmic psi series, and then derive the recursion 
relations for the coefficients and in particular show that extraneous terms have zero 
coefficients). Another comment we would like to include concerns the nature of 
‘characteristic’ hypersurfaces. The special choice (3.2) excludes the cases X ( x ,  r )  = 
f( t )  = t - to (without loss of generality); the lines t - to = 0 are characteristics for the 
PDE (2.9) in the context of the usual Cauchy problem, where we prescribe arbitrary 
Cauchy data on a non-singular non-characteristic hypersurface X ( x ,  t )  = 0. Of course, 
since PainlevC tests are concerned with generic singular hypersurfaces, we are free to 
exclude special hypersurfaces for reasons of convenience alone, and it may be necessary 
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to exclude some because the proposed series expansion breaks down. However, it is 
very important to identify and exclude characteristic hypersurfaces (especially when 
the PDE are not semilinear) because singularities of arbitrary character can live on 
characteristics and such singularities, no matter how ‘movable’ they appear to be, have 
no bearing of the PainlevC property of the PDE. 

Substituting ( 3 . 1 )  and (3.2) into (2.9) and equating coefficients of like powers of 
X determines p and q and defines recursion relations for the R,, T,, j = 0, 1 , .  . . . 
Essentially, it is required that the recursion relations be consistent so that the series 
( 3 . 1 )  contain the requisite number of arbitrary functions as required by the Cauchy- 
Kowalevski theorem (in this case four) in order that ( 3 . 1 )  represent the general integral. 
It is usually also required that p and q be integers; however, we drop this requirement 
since any non-PainlevC behaviour at leading order (movable fractional or irrational 
powers or, if an exponential factor were present, movable essential singularities) could 
easily be removed by an obvious transformation. 

In order to determine the leading order behaviour of R and T in the neighbourhood 
of the singularity manifold defined by X(x, t )  =0, we assume that 

R = R 0 X P + o ( X P )  T =  TOX4+O(X4) ( 3 . 3 )  

and that the ‘little oh’ terms do not take the lead after differentiation. Substituting 
( 3 . 3 )  into (2.9) and balancing powers of X shows that the dominant terms in (2.96) 
vary according as to whether the constants A and B are non-zero or zero. There are 
three cases to consider: 

(i) B # 0, A arbitrary, 
(i i)  B = 0, A # 0, 
(i i)  A = B = O .  

Case 1 .  B # 0, A arbitrary (i.e.,, 16c+ ( a  + b ) ( 3 a  - 5 6 )  f 0). In this case, in the neigh- 
bourhood of the singularity manifold defined by X(x, t )  = 0, using the WTCK method, 
we obtain the following formal logarithmic psi-series expansions for R and T :  

R(x, t ) =  R , X - ” 2 + R , X ’ ~ 2 + R 2 X 3 ’ 2 + ( R 3 + R 3 , 1  In X)X5/2+(R4+R4,1  In X)X7’2 

+ (R ,+  R5,l In X)X9/2+(R,+ R6,1 In X +  R6,,(ln X)2)X11’2 

+ o ( x I ~ / ~ ( I ~  x ) ~ )  ( 3 . 4 a )  

T(x, r ) =  T O + T l X + T 2 X 2 + T 3 X 3 + T 4 X 4 + ( T 5 + T 5 , ,  l n X ) X 5  

+(  T6+ T6,1 In x)x6+o(x7 In x) ( 3 . 4 b )  

T,, T , , k  are (locally analytic) functions of t. The resonances are where the R,, 
given by 

( j  + l ) j (  j - 2 ) ( j  - 3 )  = 0 valid for j 3 1 .  ( 3 . 5 )  

The resonances are the values of j at which arbitrary functions arise in the expansions 
( 3 . 4 )  due to the vanishing of the coefficient determinant of the pair of recursion relations 
defining and T / , k ,  and for every non-negative integer resonance there is a compatibil- 
ity condition which must be identically satisfied in order that ((2.9) has a general 
integral of the form ( 3 . 1 )  (i.e. no logarithms); if a positive non-integer resonance 
occurred, that would normally indicate that fractional powers of X should be included 
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in (3 .1) ,  and so on. The four arbitrary functions of integration in the expansions 
(3.4a, b )  are 

The resonance j = - 1  is usually associated with f(t) being arbitrary (cf Weiss et a1 
(1983)--see comment in case 2 below), i.e. we are expanding about an arbitrary 
non-characteristic hypersurface. The resonance j = 0 is checked separately and arises 
from the fact that there is only one equation at leading order (order X-’”)  and it only 
determines Ro( t ) ,  leaving To( t )  arbitrary. The first few coefficients in the expansions 
(3.4a, b )  are 

f ( t )  TO(t) T2( t )  R3( f ) .  (3.6) 

Ro = ( - 3 / 4 B ) ’ / 4  (four values) 

To( t )  arbitrary 
R,( t )  = -iA(R0)3f’( t )  

Tl( t )  = -g( t )  

where ‘:= d/dt. We find that the compatibility condition corresponding to the resonance 
j = 2 is identically satisfied and so there no logarithmic terms need to be introduced. 
However, since the compatibility condition corresponding to the resonance j = 3 is not 
satisfied in general, it is necessary to introduce a logarithmic term into the expansion 
for R with coefficient 

R3,,( t )  = $ 3 A 2  - l6B)(R0)’j”( t ) .  (3.7) 
Some coefficients of higher logarithmic terms are 

From (3.7) it follows that a necessary condition for the absence of movable logarithmic 
terms in the expansions is 

Thus in the case 3 A 2 -  16B = 0,  B # 0, the variables R2 and T have no movable critical 
hypersurfaces (curves) of the special form implied by the logarithmic terms (3 .7)  and 
(3.8). We emphasise once again that we have not proved that equations (2.9) have 
the Painleve property in the case 3 A 2 -  16B = 0;  the Painlevt property is a global 
property that cannot be proved in any reasonably practical way by looking at local 
expansions such as (3.1). In this case a partial proof of the PainlevC property may be 
given a posterori by using the fact that we know how to solve equations (2 .9)  by the 
inverse scattering method when 3 A 2  - 1 6 8  = 0. 

Now the relation (3 .9)  is precisely the condition that GDNLS be equivalent to DNLSI  

and DNLSII  under the gauge transformation (2.6) (provided a # b;  the case a = b 
belongs to case 3 below). If U ,  and U,( = U T )  solve DNLSI (1.2) and u2 and u2( = U T )  
solve DNLSII  (1.3), then a solution of GDNLS, which now has the special form (1 .5)  
with a # b, is given by 

3 A 2 -  16B=O i.e. c = i b ( 2 b  - a ) .  (3 .9)  

1/2  

U =  - u1 exp(ik,$) = ( a  - b )  exp(ik,$) ( a b b ) l ’ *  ( 3 . 1 0 ~ )  

where $ is defined by equations (2,12a, b )  and 
b2 

2 ( a  - b) ’  
k2=-- b ( a  - 2 b )  

2 ( a  - b )  
k, = (3 .11)  
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We conclude the discussion of this case with some remarks about similarity reduc- 

R(x, t )  = f-”4R(z) T(x, t )  = T ( z ) +  h In t z = xt-1’2 (3.12) 

tions of equations (2.9). Consider the scaling reduction 

where h is a complex constant. Then R ( z )  and T(z)  satisfy 

-$R - izR’= RT”+2R’T’ ( 3 . 1 3 ~ )  

R ( + z T ’ - h ) = R ” - R ( T ’ ) ’ + A R 3 T ’ + B R 5  (3.13b) 

where ’:= d/dz. Equation (3.13a) can be integrated once after multiplication by R, 
which gives T’ in terms of R2. Substituting for T’ in (3.13b) and defining w:= R 2  
gives a second-order ODE for w which is of PainlevC type if and only if 

3A2 - 1 6 8  = O  i.e. c = ib(2b - a ) .  (3.14) 

Unless (3.14) holds, logarithmic terms arise in the series expansion of w (and hence 
also of R )  in the neighbourhood of a ‘pole’ at zo at the w ~ , ~  term (corresponding to 
the R3,1 term in ( 3 . 4 ~ ) ) .  In fact, the series expansions for R(z)  and T(z)  about z = zo 
have a very similar structure to the series expansion (3.44 b),except that the coefficients 
are constants instead of functions of t .  Note also that if (3.14) holds then w ( z )  satisfies 
the fourth PainlevC equation (Ince 1956) 

w ” =  (1/2w)( w‘)2+;w3+4zw2+ 2(z2- a)w + p /  w (3.15) 

where a and p are constants, after appropriately rescaling w and z. 
However, it we consider the travelling wave solution of (2.9) 

R(x, t) = R ( z )  T(x, t ) =  T ( z ) + p t  z = x - A t  (3.16) 

where p and A are constants, then R and T are solvable in terms of Jacobian elliptic 
functions, so that R Z  and T’ are meromorphic throughout the complex z plane. In 
the series expansions of R and T, there are no logarithmic terms corresponding to 
those that arise in (3.4a, b) for any A or B, since for the travelling wave reduction, 
the singularity manifold satisfies f’( t) = 0 (recall equation (3.7)). 

Case 2. B = 0 and A # 0 (i.e. 16c + ( a  + b)(3a - 5b) = 0 and a # b). In this case, in the 
neighbourhood of the singularity manifold defined by (3.2), using the WCK method, 
we obtain the following formal logarithmic psi-series expansions for the R and T: 

R(x, t ) =  R l X - ’ + R 2 + ( R 3 + R 3 , 1  lnX)X+(R,+R, , ,  l n X ) X 2  

+(R,+  R5,l In X +  R,,,(ln X)’)X3+O(X4(ln X ) 2 )  ( 3 . 1 7 ~ )  

T(x, t ) =  To+TlX+TzX2+(T3+T3,11nX)X3+(T4+T4,1 l n X ) X 4  

+ ( T 5 +  T5,,  lnX+T5,2( lnX)2)X5+O(X6( lnX)2)  (3.17b) 

where the R,, R,,k, T,, q , k  are (analytic) functions of t. I t  may seem unusual to label 
the leading coefficient in the expansion ( 3 . 1 7 ~ )  R I .  However, if it is labelled Ro, then 
the recursion relations take the form of a pair of linear equations for Rj-l,k and T,,k. 
Therefore it seems more iiatural to write the expansion as above and take the view 
that the RoX-2 term is there but has a vanishing coefficient. The resonances are given 
by 

(3.18) j 2 ( j  -3)(J - 5 )  = 0 valid f o r j  2 2 
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and after checking j = 0 separately, we find resonances j = 0 , 3 , 5 .  The four arbitrary 
functions in the expansions (3.17a, b )  are 

f ( t )  To(t) T’(t)  R s ( t ) .  

R I (  t )  = *(4/Af’( t ) )” ’  

T ~ (  t )  = -if’( t )  

The first few terms are 

R2( t )  =fRiY’/(f’)* 

T2( t ) = afY t )/f’( t ) . 
The compatibility condition corresponding to the resonance j = 3 is not identically 
satisfied and it is necessary to introduce logarithmic terms in the expansion. The first 
logarithmic terms have coefficients 

T3,l =i(f)-3{f’f”’-3(f’)2) R3,1 = ( 2 / f ) R l  T3,1 * (3.19) 

Some higher coefficients of logarithmic terms are 

T5,2  = -?f’( T3,1)2 RS,3 = 0. (3.20) 

Note that the resonancej = 5 would be expected to create a RS,,X3(ln X ) ’  term because 
of the R5,1 and R5,2 terms which already arise due to the coupling with the product 
of the R3,1 and T3,1 terms; however, a cancellation occurs with gives R5,3 = 0. Equation 
(3.19) shows that movable logarithms must always arise in the expansions for case 2, 
and therefore Painlev6 analysis strongly suggests that, in this case, equation (2.1) is 
non-integrable. 

If we consider the similarity reductions (3.12) and (3.16), then logarithmic terms 
corresponding to the R3,l and T3,1 terms in (3.la,  b )  do not arise in the series expansions 
of R ( z )  and T ( z )  in the neighbourhood of a ‘pole’ at zo, since for both reductions 
f’f”’-3(f’)’= 0 (recall equation (3.19)). However for the scaling reduction (3.12), 
logarithmic terms do appear at the j = 5 resonance and we conclude that the scaling 
reduction cannot have the Painlev6 property in case 2. Notice that the scaling and 
travelling wave reductions have qualitatively different singularity structures to the full 
PDE in case 2. 

The absence of the factor j +  1 on the left-hand side of equation (3 .18)  deserves a 
brief comment. It is reasonably easy to show directly that, for a generic system of ODE 
or PDE is of total order k, the set of recursion relations which express thejth coefficient 
in an expansion analogous to equation (3 .1)  (counting the leading coefficients a ‘zeroth’) 
have coefficient determinant in the form of a polynomial i n j  of degree k, one of whose 
roots is j = - 1 .  This can never be a valid resonance, of course, since the terms of the 
series begin a t j  = 0 and the derivation of the recursion relations is valid only f o r j  > jo ,  
for some j o  3 1 ,  the first few coefficients requiring a separate treatment. Some authors 
remark that the false resonance j = -1  corresponds to the arbitrary function which 
describes the singular hypersurface (such as f( t )  in equation (3.2)). Observing the 
factor j +  1 provides a useful check on the calculations and so it is worthwhile to be 
aware of possible exceptions, of which there are several types. A sufficient condition 
which will guarantee that j +  1 is a factor is that the leading terms in the expansions 
in ascending powers of X of the differential equations themselves (after the formal 
series solutions have been substituted in) involve only the j = 0 terms. This condition 
can be violated if one of the indices p ,  q, . . . . , as in equation (3.1), is zero or a small 
positive integer, as is the case in equation (3.1 b )  where q = 0. For example, the general 
solution of the ODE 

(3.21) Y‘Y”’ - 2 ( ~ ” ) *  + 1 8 ~ ’  = ~ y ( y ’ ) ~  
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where ’:= d/dx, in the neighbourhood of a logarithmic branch point at x o ,  has an 
expansion 

y = a , + a , ( x - x , ) ’ + a , ( x - ~ , ) ~ + .  . . + a g ( x - x o ) 8 + ( x - x o ) 9 [ a 9 + a 9 , 1  I n ( x - x , ) ] + .  . . 
( 3 . 2 2 )  

in which the arbitrary constants of integration are xo,  a ,  and a9 and the recursion 
relation takes the form 

j ( j - 2 ) ( j - 9 ) a ,  = F(a, ,  a’, .  . . , xo)  j z 4 .  (3 .23)  

In this case the j = 3 terms are dominant on the left-hand side of (3 .21)  and the false 
resonance occurs at j = 2.  A different type of exception to the j = -1 rule is provided 
by the PDE 

u,xuyy - ( U q J 2  = 0 (3 .24)  

whose general integral can be expanded in the form 

U = u0(x)  + U , ( X ) X  + u3/2 (x )X3”+  u 2 ( x ) X 2 +  U ~ , ~ ( X ) X ~ ’ ~ + .  . . (3 .25)  

where X := y -  f ( x ) .  In this case the arbitrary functions are f ( x )  and uo(x )  and the 
recursion relation takes the form 

j ( j - t ) u , ( x ) = F ( u o ,  u1, u3/z,.. . , uj-1/2; x , f ( x ) )  j 3 2  (3 .26)  

where F depends on the indicated arguments and their first two derivatives. Note that 
the j = $ terms are dominant in the second derivatives of U and so it is perhaps not 
surprising that the false resonance occurs at j = f. There are many other possible 
exceptional series expansions of qualitatively different character, including some where 
the false resonance is absent altogether. 

Case 3. A = B = 0 (i.e., a = b, 4 c  = b 2 ) .  In this case, equations ( 2 . 1 )  have the Painlev6 
property (as do the variables RZ and T,) and can be solved as follows. We define new 
variables 

U’= R exp(iT) = U exp(fib$) v ’ =  R exp(-iT) = u exp(-iib+). (3 .27)  

Then U‘ and v’ satisfy the linear uncoupled PDE 

. -  - . -  - 
IU, = U,, - l U ,  = U,,. (3 .28)  

Linear PDE such as (3 .28)  are easily solvable by integral transform methods. 

condition for the system of PDE ( 2 . 1 )  to be completely integrable is 
Therefore in all three cases, PainlevC analysis strongly suggests that a necessary 

c = t b ( 2 b  - a ) .  (3 .29)  

Furthermore, this condition is a sufficient condition for integrability since, when 
satisfied, it is then possible to make a change of variables in order to transform ( 2 . 1 )  
into either DNLSI or the linear equation (3 .28) .  If (3 .29)  holds, then equations (2 .1)  
become 

iu, = u, ,+ iauou ,+ ibuzu ,+~b(2b-a )u3u2  
-iu, = v, - iauuu, - ibu2u, + $b( 2 b  - a )  U 2 3  u . 

( 3 . 3 0 ~ )  

( 3 . 3 0 6 )  



2014 P A Clarkson and C M Cosgrooe 

The Painlevi-type expansions for the original variables U and U now take the forms 

(3.31) 

with p = a / ( a  - b), and X as in (3.2), provided that a # b (if a = b then equations 
(3.30) can be transformed into an uncoupled system of linear "case 3 above). 
The resonances are given by 

( j +  l)j( j -2)( j -3) = 0 

The compatibility conditions associated with the resonances j = 2 and j = 3 are identi- 
cally satisfied and the four arbitrary functions are 

either U,( t )  or vi( t )  j = 0,2,3.  

valid for j 3 1. 

f( t )  

Therefore equations (3.30) have solutions of the form (3.31) with the requisite number 
of arbitrary functions. 

Note that the only restriction upon a or b is a # b, and so p may take any real 
value, rational or irrational. Therefore unless p is an integer, the variables U and U 
exhibit non-PainlevC behaviour at leading order (movable fractional or irrational 
powers according to whether p is a rational fraction or irrational). However, this 
non-PainlevC behaviour is trivially removable, for example, by transforming to the R 
and T variables and therefore has no bearing on the question of integrability. Addi- 
tionally, note that the leading order powers of U and U are not equal, in general, since 
we are not, for the purposes of Painlevt analysis, restricting attention to the original 
situation where U and U are mutually complex conjugate functions of real variables. 

4. The generalised mixed non-linear Schrodinger equation 

The techniques of 8 3 apply essentially unchanged to the generalised mixed non-linear 
Schrodinger equation (GMNLS) 

( 4 . 1 ~ )  

(4 . lb)  

( a ,  b, c, d real constants), which generalises both GDNLS (2.1) and the mixed non-linear 
Schrodinger equation ( M N L S )  of Wadati et a1 (1979a) 

i w ,  = U,, + du'o + ib( u2u), ( 4 . 2 ~ )  

-io, = u,,+duu2-ib(uu2),. (4.26) 

iu ,  = U,, + iauuu, + ibu2u, + cu3u2 + du'u 

iu,  = U,, -iauou, -ibu2u, + cu2u3+ duo2 

Equation (4.2) is equivalent to DNLSI under the point transformation 

U ' =  U expi-i(ax+ a 2 t ) ]  V ' =  U exp[i(ax+a2t)]  (4.3a) - 
2 = x + 2 a t  t = t  (4.36) 

with the choice a = d/b.  The variables U'(?, i) and V'(2, i )  satisfy equations (4.2) with 
tildes on all variables, except that d' = 0,b' = b. This transformation was used by Kawata 
et a1 (1980) to solve the initial value problem for DNLSI  by inverse scattering under 
the restriction U (  x, t )  - (constant) exp[i(kx -ut)]  as x + fa, which was more general 
than the earlier treatments of Kaup and Newel1 (1978) and Kawata and Inoue (1978). 
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With the choice 

a = d / ( a  - b )  a # b  (4.4) 

the same point transformation (4.3) converts GMNLS (4.1) to GDNLS (2.1) with tildes 
on all variables except the parameters a, b and c, which are unaffected. If a is allowed 
to be arbitrary, then (4.1) transforms to an equation of the same form with 

; = a  6 = b  E = c  d =  d - a ( a  - b)  (4.5) 
which shows incidentally that (4.3) has no effect when a = b. In addition to (4.3), 
equation (4.1) also admits the gauge transformation (2.6), where the potential $ is 
defined by (2.4) regardless of the value of d. The parameters a, b and c transform 
according to (2.7), and d is unaffected. 

This discussion limits the number of new cases which need to be PainlevC tested. 
Define new parameters A and B by ( 2 . 9 ~ )  above; then since the du2u and duu' terms 
are never dominant (except in the case a = b = c = 0, which is just NLS), the PainlevC 
testing splits into the same three cases as in 0 3. In case 3, where A = B = 0, a = b, 
4c = b2, GMNLS is equivalent to NLS under the gauge transformation, and so is integrable. 
In case 2, where A # 0, B = 0, we have that a f b and so GMNLS is equivalent to GDNLS 

under the point transformation. In § 3, we found that this case fails the PainlevC test 
and so is probably not integrable. In case 1 ,  where B f O  and A is unrestricted, we 
know that GMNLS is equivalent to GDNLS under the point transformation. In § 3, we 
found that this case fails the Painled test and so is probably not integrable. In case 
1 ,  where B Z O  and A is unrestricted, we know that GMNLS is equivalent to GDNLS 

whenever A # 0 (recall A = b - a ) .  In that case, the necessary condition that (4.1) has 
the PainlevC property except for the overall multiplicative factors X P p  and X p - - '  as 
in equation (3.31) (which are only an artefact of the choice of variables) is 

c = f b ( 2 b - a )  (4.6) 
which is also satisfied identically in case 3. 

gauge transformation (2.6), this case can be put in the canonical form 
The only remaining case to be tested is case 1 with a = b and 4c # b2. Under the 

iu, = U,, + du2u+ cu3u2 (4.7a) 

(4.7b) 

with c # 0. In terms of the polar variables R and T, where U = R eiT, U = R e-iT, we 
find logarithmic psi-series expansions for R and T of precisely the same forms as 
(3.4a, b) .  The arbitrary functions are f(t), To(t) ,  T 2 ( t )  and R 3 ( t ) .  The first term 
involving a movable logarithm is R3,1X5'2  In X ,  where X := x -f( t )  and 

R3,1  t ,  R :=  - 3 1 4 ~ .  (4.8) 
Since R3,,  is independent of d, it is not possible to choose d so as to make R3,' vanish 
identically for generic f( t ). We conclude that equation (4.7) always has movable 
logarithms when c # 0, and so is probably not integrable. (Of course, just as in § 3, 
the travelling wave reduction is free of logarithms and integrable in terms of elliptic 
functions.) 

Thus all cases of GMNLS free of movable logarithms satisfy (4.6) and we conjecture 
that these are the only integrable cases. Further evidence against integrability when 
(4.6) does not hold is that the equations then do not admit a non-trivial Wahlquist- 
Estabrook prolongation structure (Dodd and Fordy 1984). However, one must be 

-iu, = U,, + d u d +  cu2u3 
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careful when judging integrability on the basis of internal symmetries; for example, 
Painlevi’s first equation 

d2y/dx2 = 6 y 2  + x (4.9) 

admits only a finite group of discrete scalings of order 5, but any reasonable definition 
of integrability should certainly include this equation. When (4.6) holds, G M N L S  is 
equivalent under the gauge transformation (2.6) to either MNLS (4.2) (case 1 )  or NLS 

(2.15) (case 3), and, in the former case, the point transformation (4.3) establishes the 
equivalence with DNLSI (1.2). 

A more general starting point would be to let all twelve terms in equations (4.la,  b)  
have independent complex coefficients (the coefficients of U,, and U,, can be normalised 
to unity). In that case, two different sets of conditions must be satisfied in order that 
U and v admit expansions of the form (3 .31) .  The first can be found by substituting 
(3.31) into the PDE and requiring that the resonances be distinct integers, positive or 
negative, but the justification for the procedure (especially the interpretation of negative 
fractional resonances) requires using an argument similar to that in 0 14.31 of Ince 
(1956, p 327), which is based on Painlevi’s a-test. Generically, eight algebraic 
expressions involving the coefficients must take integer values, two for each value of 
uou0, which itself satisfies a quartic equation. We have not fully explored all the various 
possibilities, but we are reasonably confident that the only way to satisfy this first set 
of conditions is to let the coefficients of U,, v f ,  u2u  and uv2 be arbitrary while the 
remaining terms have coefficients restricted to the same forms as in (4.1). In that case, 
the resonances occur at j = O , 2 , 3 ,  and then the second set of conditions, namely 
freedom from logarithms, requires that the coefficients be exactly as in (4.1) (perhaps 
after rescaling) (from j = 2 resonance) and satisfy (4.6) (from j = 3 resonance). 

For convenience, we write down the associated linear problem for GMNLS subject 
to the integrability condition (4.6). It will contain two spectral parameters A and p 
related by 

A * = ( a - b ) p - t d .  (4.10) 

It is natural to eliminate p in favour of A whenever a # b. 

w,,, = -i[p + f (  a - 2 b )  u u ] ~ ,  + how2 ( 4 . 1 1 ~ )  

w 2 , = A u w , + i [ p + f ( a - 2 b ) u u ] w 2  (4.11b) 

w ~ , ~  = Awl + Bw2 ( 4 . 1 2 ~ )  

W Z , ~  = CW, - A w ~  (4.12 b )  

where 

A = -2ip2 - iA2uu -$(a -2b)[i( uv, - uu,) +f( a + b)u2u2] ( 4 . 1 3 ~ )  

B = A (2pu + io, + ; m u )  (4.13 b )  

C = A ( 2 p u - i u , + f a u u ) .  (4.13 c )  

The x-derivative part (4.1 1 )  is a simple generalisation of the standard AKNS (Ablowitz 
et a1 1974) and Kaup-Newel1 (Kaup and Newel1 1978) spectral problems and may be 
transformed into either the standard forms by the gauge and point transformations 
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already discussed (Wadati and Sogo 1983, Kundu 1984). The effect of the combined 
gauge and point transformations on the variables and parameters is 

= e-io ( 4 . 1 4 ~ )  

(4.146) 

io u t =  u e 
w ;  = w1 e-i*/2 i o / 2  wi= w2 e 

x’ = x +  2at 

*’= * 
t ’ =  t ( 4 . 1 4 ~ )  

(4.14d) 

a ’=  a -2k b ’ = b - 2 k  d’=  d - a ( a  - b) (4.14e) 

A’=h p t = p - f a  (4.14f) 

where 

:= k+ - a x  - a2t 

and the potential +b is defined by (2.4) (valid for d # 0). It is worth noting that the 
initial values u ’ ( x ‘ ,  0) and u ’ ( x ’ ,  0) of the primed variables are easily reconstructed 
from the initial values of the original variables and that the Kaup-Newel1 boundary 
condition, u ( x ,  0) + 0, u ( x ,  0) + 0 as x + fa3 (sufficiently fast so that +(x, 0) is bounded), 
is preserved by the primed variables. (See Kawata et a1 (1980) for the treatment of 
the more general boundary condition, u ( x ,  t )  - (constant) exp[i(Kx - w t ) ]  as x +  fa.) 

5. Other non-linear Schrodinger equations 

5.1. The Dodd-Fordy equation 

In their investigation of the integrability of certain generalisations of the NLS equation, 
Dodd and Fordy (1984) presented the equation 

(5 . la )  

(5.16) 

as a candidate for complete integrability. PainlevC analysis of this equation suggests 
that it is probably not integrable since it has movable logarithms of the sort encountered 
in 0 3, although this argument is far from watertight. Dodd and Fordy’s argument in 
favour of integrability is that equation (5.1) has a non-trivial prolongation structure, 
which leaves open the possibility that it may have some interesting exact solutions and 
that it has an associated linear problem. However, the latter cannot be used as a 
starting point for inverse scattering since the spectral parameter can be removed by a 
trivial gauge transformation. 

In order to run the PainlevC test, complexify all variables in (5.1) and convert to 
polar form: 

U = R elT U = R eCT. (5.2) 
The analysis splits into two cases: case 1, b # -$a2; case 2, b = -$a2.  In case 1, R and 
T admit the following expansions: 

iu ,  = U,, + 2ia( u3/2u1’2)x + bu’u 
-iu,=uX,-2ia(u 1 / 2  U 3 /2  ),+buu2 

cc [J/31 

R = RJ,&(t)XJ-’(1n X ) k  ( 5 . 3 ~ )  
J = o  & = O  

[J/31 
T = A l n X +  c c T,k(t)X’(lnX)k 

1=0 k = O  
(5.36) 
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where, as before, 

X := x -f( t ) .  

The resonances are given by 

(5.4) 

( j +  l ) j ( j  - 3 ) ( j - 4 )  = O  j Z l  (5.5)  

. f( t)  To,o(t) R 3 , 0 ( f )  or T 3 , 0 ( t )  R 4 , 0 ( f )  or T 4 , 0 ( f ) .  (5.6) 

and the four arbitrary functions are 

The first few coefficients are 

Ro,o= + - ( - $ a 2 - i b ) - 1 ’ 2  A = -9aR 3 0,o ( 5 . 7 ~ )  

R1,o = -iARo,of Tl,o = - Q (  A’ + 4)f’ (5 .76)  

and the first non-trivial logarithmic terms have coefficients 

R3,1 = kA2 R O . O f ”  = &A(A2 - 8)f”. ( 5 . 8 )  

Note that the resonance at j = 4 does not create any (In X)’ terms; the first such terms 
appear at j = 6. 

In case 2 ,  where b = -;a’, R and T have the expansions 

(5.9~) 

O0 [ J / 2 1  
T = To,o( t)X-’ + t )  + t )  In X + c q,&( t)XJ-’(ln X ) &  (5.96) 

in which the resonances are given by 

j = 2  k = O  

( j +  l ) ( j -  l ) ( j - 4 ) ( j - 6 )  = O  j 2 3 .  (5.10) 

This case is more difficult to treat since one must write down six recursion relations 
for RJ,kr R J + l , k ,  RI+’,&, q,k, TJ+l ,k  and in order to be able to solve for RJ,k and 
q , k  (the 6 x 6 coefficient matrix has rank 4 for generic j ;  the resonances are the values 
of j such that the rank is 3 or lower); the difficulty is partly alleviated by the change 
of variable: ?. = T +  (4a/3) R dx. The four arbitrary functions are 

f (?)  Tl,O(t) R 4 , 0 ( f )  R 6 , 0 ( f ) .  ( 5 . 1 1 )  

The first few coefficients are 

8 
T0,O = - - f’ 

and the first logarithmic terms have coefficients 

2 
R2,l = - Ri.0 

3f’ 

4 
R1,o= --f”/(f’)3 a (5.12) 

(5.13) 

It is a curious fact that the resonances at j = 4  and j = 6  do not create any higher 
powers of 1nX than those already caused by the logarithm at j =  1; thus R4,2#0, 
R6,3 # 0 while, due to non-trivial cancellations, R4,3 = 0, R6,4 = 0, R6,5 = 0 (implied by 
R4,3 = 0), similarly for the corresponding coefficients of T. 
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5.2. The Wadati-Konno-lchikawa equation 

As a final application of Painlevi analysis to members of the NLS family of equations, 
we shall investigate the Painlevi character of the Wadati-Konno-Ichikawa ( WKI)  

equation (Wadati et al 1979b, Shimizu and Wadati 1980) 

( 5 . 1 4 ~ )  

(5.14b) 

which is known to be integrable via its relationship to NLS (Ishimori 1982, Wadati and 
Sogo 1983) (see below for further details). The polar variables R and S defined by 

(5.15) 

-i uT. = [ U ( I +  U V ) - I / ~ I X X  

i V, = [ V( 1 + U V ) - ” ~ ] X X  

:= ~ ( 1  - ~ ~ ) - ‘ / 2  e’s V:= R(1 - R2)-II2 e-1S 

have the following expansions about a movable singular hypersurface: 

R = 1 + T )  Y +  R I (  T )  Y3I2+ R3/2( T )  Y 2 +  R2( T )  Y s ’ 2 + .  . .+ R,( T )  Y ’ + l / 2 + .  . . 
( 5 . 1 6 ~ )  

(5.16b) 
S = S o ( T ) + S , / * ( T ) Y 1 ’ 2 + S , ( T ) Y + S 3 / * ( T ) Y 3 / 2 + S 2 ( T ) Y 2 + .  . . + S , ( T ) Y ’ + .  . . 

where 

Y := x - F(  T )  (5 .17 )  

and j runs through all non-negative half-integer values, except that there is no 
R o ( T ) Y ’ ”  term. (Since the symbols X and T are used here as coordinates, the 
previously used X and T have been replaced by Y and S, respectively.) The resonances 
are given by 

(5.18) ( j + t)j( j + f ) ( j - 1 ) = O 

and the four arbitrary functions are 
j21 

F ( T )  S O ( V  S l / 2 ( 7 - )  Rl (T) .  (5.19) 

The remaining coefficients for which j G 1 are given by 

R1,2( T )  = -2(F’)2(Sl/2)-2 ( 5 . 2 0 ~ )  

SI( T )  = $ ( F ‘ ) - 2 [ R l ( S l / 2 ) 3 - 8 F ‘ S b +  12(F’)2Rl(S1/2)-’]. (5.20b) 

The movable square root singularity manifest in equation (5.16) is not one which 
can be removed by squaring a variable or by any simple quadratic transformation. 
Typically such square roots or higher algebraic singularities are created or cancelled 
out by transformations which mix dependent and independent variables, for example, 
hodograph or Legendre transformations. In the simplest case where, say, u(x,  t )  and 
U ( X ,  T )  satisfy PDE which are related by a Backlund transformation of the form 

U = U [ x ,  t, u ( x ,  t ) ]  X = X [ X ,  t, u(x,  t ) ]  T = t  (5.21) 
where both U and X are ( x ,  t)-dependent functionals of u(x, t ) ,  the U ( X ,  T )  equation 
will have movable square roots, in general, wherever d X / a x  has a simple zero (which 
does not live on a characteristic) and movable algebraic singularities of degree k + 1 ,  
in general, whenever axlax has a zero of order k, provided U [ x ,  t, u(x,  t ) ]  is meromor- 
phic in x and t in a neighbourhood of the curve on which a X / a x  = 0. The Harry-Dym 
equation 

UT = 2( u-’’2)Xxx (5.22) 
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(Kruskal 1975) is related by a Backlund transformation of this type to K d v  (see, for 
example, Levi et a1 1984) and more Closely to M K d V  (See, for example, Kawamoto 
1985); in this case a x l a x  has double zeros at the double poles of K d v  and so Harry-Dym 
has movable cube roots, as is easily verified directly (see Weiss 1983). In more 
complicated problems where more than one variable takes part in the hodograph part 
of the Backlund transformation (simplest case: put T = T [ x ,  t, u(x, t ) ) ]  in (5.21)), 
algebraic singularities are created by the zeros of a certain Jacobian determinant; again, 
a zero of order k implies an algebraic singularity of degree k +  1,  in general, and the 
case k = 1 may be considered generic in some sense. (The reader interested in pursuing 
this topic may wish to experiment with the Ampkre equation (3.24).) 

It is not generally recognised that the Backlund transformation connecting WKI  to 
NLS is reasonably simple in both directions. Ishimori (1982) and Wadati and Sogo 
(1983) express the solutions u(x, t )  and u ( x ,  t )  of NLS in terms of the solutions U ( X ,  T )  
and V(X, T )  of WKI ,  but d o  not discuss the inverse. On the other hand, Levi et a1 
(1984) conjecture that the inverse can only be derived 'from a conceptual point of 
view' (i.e. by invoking the implicit function theorem), but that concrete construction 
of the inverse is only possible in the case of pure soliton solutions. Consequently, 
they were unable to derive any auto-Backlund transformations for WKI.  We claim that 
Ishimori's W K I  + NLS transformation is just a Miura transformation, where this term 
denotes a Backlund transformation between different PDE which is explicit up  to 
quadrature in one direction and depending on a Riccati equation in the other. Indeed, 
by choosing the variables appropriately, the Riccati equation is the same as the one 
appearing in the Miura transformation connecting DNLSI  (or DNLSIII)  with NLS due 
to Wadati and  Sogo (1983)- see equation ( 2 . 1 6 ~ )  above. It follows that WKI  and 
DNLSI are related to each other by a simple transformation which is explicit up  to 
quadratures in both directions, which we construct below, and that it is now a 
straightforward calculation to construct auto-Backlund transformations for the W K I  

equation. The situation is analogous to the case of the Harry-Dym equation (5.22), 
which is related to K d v  by a Miura transformation (after appropriately arranging the 
transformation in Levi et a1 1984) and to M K d v  by a simple hodograph transformation 
and quadratures (see, for example, Kawamoto 1985). 

The pair of equations (5.14a, b )  is the integrability condition for an  infinite number 
of potentials, of which we draw attention to the following six potentials, 8'. e2,  e;, 
03, e4 and O f ,  defined 

B l x  = p-'M ( 5 . 2 3 ~ )  

~ 1 r = 4 i p - 6 ( ~ x ~ x x  - VxUxx)+fip-8(VUX - UV,)M (5.23 6 )  

02, = ( p U ) - '  U,  eZT = ( ~ u ) - ' U ~ - $ i p - ~ M  (5.24) 

e;, = ( p v j - '  V, OTT = (pV)- '  VT +$ip-6M (5.25) 

63, = P e3T VU, - UV,) 

e4, = U 

e,*,= v 
e4T = i(p-' U ) ,  

e,*, = -i(p-' V) X 

(5.26) 

(5.27) 

(5.28) 

where 

p := ( 1  + UV)"2 M := ( VU, - UV, )2  - 4 U, V,  . (5.29) 
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The potentials O2 and e,* are related by 

e2 + e; = In (5) + constant (5.30) 

and we shall set the additive constant to be zero. 

new, is given by 
An interesting symmetry group admitted by the WKI  equation, which we believe is 

( 5 . 3 1 ~ )  p' = A - l p  A := a6 + P y  - CUYU +pSV 

U ' =  A - ' (  (Y' U - p 2 V - 2 a p )  

V' = A - l ( - y 2  U + 6 ' V + 2 y 6 )  

X ' =  (a6 + P y ) X  - .ye,(X, T )  + pSO,*(X, T )  

T ' =  T 

(5.31 b) 

( 5 . 3 1 ~ )  

(5.31 d )  

(5.31 e)  

where a, p, y and 6 are complex constants subject to a6 - p y  = 1. The functions 
U ' ( X ' ,  T ' )  and V ' ( X ' ,  T ' )  solve (5.14a, b) with primes on all variables. The six 
potentials above all transform simply under this group ( el and O3 are invariant). When 
all variables and parameters are complexified (which we are still assuming), the group 
is a two-to-one homomorphic image of SL(2, C) and is represented by the unimodular 
matrix 

(; 3 
If we restrict to the real slices in which X and T are real variables and U and V are 
complex conjugates of each other, then the star notation in (5.25) and (5 .28 )  denotes 
complex conjugation and we must have 

6 = a *  y = -p*  a f f *+pp*= 1 (5.32) 

In terms of the 0 potentials, Ishimori's Backlund transformation can be arranged 
thereby restricting attention to the subgroup SU( 2) .  

in the form 

a =1.- 
aX 

a 
ax 

(5.33a) 

(5.336) 

21 + p - 7  exp 021 

U = -"- [( I  + p - l )  exp @I 

x = e,(x, T )  (5.33c) 

t = - T .  (5.33 d )  
The lower case variables u(x, t )  and u ( x ,  t )  solve NLS: 

( 5 . 3 4 ~ )  

(5.34b) 
A short calculation shows that the NLS variables U, U, x and t are invariant under the 
symmetry group (5.31). In terms of the NLS variables, the defining relations for 8' 
become 

2 iu l=uxX+2u v 

-iv, = U,, + 2uv2 .  

el, = -16Uu e l l  = -16i(uux - uu,) (5.35) 
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which shows that 8, is minus 16 times the $ potential defined by equations (2.4a, b )  
with a = b = 0 and U and U solving NLS; however, we caution the reader not to confuse 
this i,b potential with the one appearing in the next paragraph. 

We now proceed to construct the inverse of the transformation (5 .33)  in several 
stages: NLS-, D N L S I I I  -, DNLSI-,  W K I .  Let a solution (U, U )  of (5.34) be given. Solve 
the compatible pair of Riccati equations 

w, = io - i u w 2  (5.36a) 

w, = -U, +2iuvw - u,w2 (5.366) 

for a function w ( x ,  t ) .  The pair of variables (U, w )  solve D N L S I I I  (2.13) with w replacing 
U and b = 2. Next define 

G = u e  (5 .37)  2i J. v '=we 2iJ 

where 

*, = uw = iiv' 

i,b, =i(uw,-  wu,) -u'w'=i ( i iv 'x-~i ix)+3u'2v '2 .  

The pair of variables (ii, v ' )  solve DNLSI:  

iu', = iixx + 2i(iizC), 

-iu, = U,, - 2i( iiv'2),. . e  - 

(5.38a) 

(5.38b) 

(5.39a) 

(5.396) 

Equations (5.36)-(5.38) above are just the inverse of equations (2.14) and (2.16a) 
which define the DNLSI  + NLS Miura transformation of Wadati and Sogo (1983). 

To take the final step from DNLSI to the W K I  equation, we need two more potentials 
G and d2 which, together with C#Jl and C#J3, are defined by 

- e  

w, = U 

41, = 0' rpIf =i6,+2iZ2 

dZx = iCG 42f =t7(1+2iv'G)GX-Gz7, 

43x = G(l + i G )  

4 ~ , = 2 ~ G ( 1 + i ~ G ) G x - G 2 ~ , - i G x .  

Gf = -iu', +2ii2v' 

The D N S L I +  W K I  transformation is given by 

p = ( 1  + 2iv'G)-' 

U = p 6 (  1 + i % )  

V = -4iplj 

(recall (5.29)) 

(5.40) 

(5.41) 

(5.42) 

(5.43a) 

(5.436) 

(5.44a) 

(5.44b) 

(5.44c) 
X = x + 242(x, t )  (5.44d) 

T=- t .  (5.44e) 
The variables U(X, T )  and V(X, T )  solve the W K I  equations (5.14a, b ) .  The 8 and 4 
potentials are related according to 

(5.45a) 

(5.45b) 

(5.45c) 
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It is practically trivial to invert equations (5.44a-e) to express the DNLSI variables 2;, 
C, G, $, x and t in  terms of the WKI  variables U, V, p, X and T. Consequently, it is 
now an elementary problem to lift up the internal symmetry structure of NLS and DNLSI 

to the WKI  equation. In particular, the two distinct Miura transformations connecting 
NLS to D N L S I I I  (see equations (2.16a, b ) )  make possible a relatively straightforward 
derivation of auto-Backlund transformations for NLS (simpler than the standard one 
of Lamb (1974)), the integrable members of the GDNLS and GMNLS families, and the 
W K I  equation. These will appear in a separate paper. 

The movable square roots in U ( X ,  T )  and V ( X ,  T )  manifest in equations (5.16a, b )  
occur at the simple zeros of 

(5.46) 
These singularities are not related via the Backlund transformation to the poles of NLS 

or DNLSI (unlike the case of the Harry-Dym, KdV and MKdV).  

We conclude this discussion by showing how the new symmetry group (5.31) arises 
naturally from our interpretation of the inverse of Ishimori’s transformation. Begin 
by expressing u(x ,  t ) ,  u(x, t ) ,  x and t in terms of the WKI variables as in equations 
(5.33a-d). If w is a particular solution of the Riccati equations (5.36a, b ) ,  the general 
solution contains one integration constant and takes the form 

a X / a x  = 1 + 2 i G .  

iY/2 e-2i4, w ’ =  w +  
6 - yG/2 

(5.47) 

where we have chosen to write the integration constant as a ratio iy/6.  Next, using 
w’ instead of w in (5.38a, b) ,  we obtain 

e’+’=(6-+yG)e’+ (5.48) 
where now y and 6 are independent due to the additive constant in $‘. Continuing 
in this manner we find 

(5.49) 
(5.50) 

U” = (8 - iyG)-2G 

U” = ( 6  - fyG)[ ( 6  -iyG)C + fir] 
(5.51) 

where a new additive constant /3 has been included in G‘. Ignoring the additive 
constants in 4;, 4; and 45, we find 

4; = 6’4, + t i  y 6 ( x  +24,) -t i  y 2 4 3  (5.52a) 

4; = (a6 + P Y ) 4 2  + PYX - 2 i P W  - b y 4 3  (5 .52b)  
4; = a 243 - 2ap ( x  + 242) + 4iP24, .  ( 5 . 5 2 ~ )  

Finally we replace all variables on the right-hand sides of (5.44a-e) by their primed 
counterparts and then express in terms of the unprimed WKI variables using (5.44a-e) 
(unprimed), (5.45a-c) and (5.50)-(5.52~). The result is the SL(2, C )  group of transfor- 
mations (5.31). 
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